Реклама

Главная - Сроки выплат
Устройство двигателей спортивных самолетов и вертолетов. Самолет и вертолет, их устройство и оборудование. К общим требованиям относятся

Вертолет представляет собой винтокрылый аппарат, в котором требуемая подъемная сила создается одним, либо несколькими винтами или пропеллерами, имеющими привод от двигателей.

Самолет летает за счет повышенного давления воздуха под своими крыльями и более низкого — под ними. Вертолет использует такой же принцип: роль крыла у него играет несущий винт с лопастями.

Вращаясь, несущий винт создает большую подъемную силу. Это вращение создает, кроме этого, и вращательный или реактивный момент, который стремится закрутить фюзеляж самого вертолета в противоположном направлении. Дабы как-то компенсировать этот реактивный момент, применяют, как правило, дополнительный рулевой винт в вертикальном положении. Если рулевой винт имеет вид вентилятора, вмонтированного в вертикально расположенное хвостовое оперение, его принято называть фенестроном.

Во всех случаях, несущий винт у вертолетов имеет автомат от перекосов, который призван обеспечивать изменение положения центра давления самого винта для управления полетом (исключение здесь составляют схемы, в которых три и более несущих винтовых механизма).

В том случае, если имеется только один-единственный приводной несущий винт, обязательным является наличие устройства, для гашения вращающего момента этого винта (как правило, это рулевой винт или же фенестрон, намного реже струйные устройства и другие). В схемах с несколькими винтами вращающий момент, зачастую, компенсируют обыкновенным противовращением имеющихся несущих винтов. Если же винт вращается благодаря реактивным двигателям, установленных непосредственно на самих лопастях винта, вращающий момент, в общем-то, почти совсем не заметен и легко может компенсироваться за счет аэродинамических рулей.

Для большей разгрузки механизма несущего винта и самого винта при больших скоростях, вертолет могут оснащать достаточно мощным и хорошо развитым крылом, которое будет придавать путевую устойчивость. Для этой же цели можно использовать и оперение.

Еще одним методом для компенсации реактивных моментов в вертолете, является установка двух несущих винтов, которые будут вращаться в противоположных друг другу направлениях и расположенных на общей оси (соосно). Тогда второй винт будет носить название аэродинамически симметричный соосный несущий винт (такой вариант, например, можно увидеть на российском вертолете Ка-50). Необходимо заметить, что вертолеты с такой схемой имеют более низкую эффективность, по сравнению со схемами в один винт, по причине интерференции винтов вертолета. Это стало причиной использования таких летательных устройств в стесненных пространственных условиях, например, в палубной авиации.

Двигатель вертолета служит для вращения несущего винта. Если на вертолете имеется несколько несущих винтов, то они могут приводиться во вращение от одного общего двигателя или каждый от отдельного двигателя, но так, чтобы вращение винтов было строго синхронизировано.

Назначение двигателя на вертолете отличается от назначения двигателя на самолете, автожире, дирижабле, так как в первом случае он вращает несущий винт, посредством которого создает как тягу, так и подъемную силу, в остальных же случаях он вращает тянущий винт, создавая только тягу «ли силу реакции газовой струи (на реактивном самолете), также дающей только тягу.

Если на вертолете установлен поршневой двигатель, то в его конструкции должен быть учтен ряд особенностей, присущих вертолету.

Вертолет может летать при отсутствии поступательной скорости, т. е. висеть неподвижно относительно воздуха. В этом случае отсутствует обдув и охлаждение двигателя, водо-радиатора и маслорадиатора, в результате чего возможен перегрев двигателя и выход его из строя. Поэтому на вертолете целесообразней применять двигатель не водяного, а воздушного охлаждения, так как последний не нуждается в тяжелой и громоздкой системе жидкостного охлаждения, для которой на вертолете потребовались бы очень большие поверхности охлаждения.

Двигатель воздушного охлаждения, обычно устанавливаемый на вертолете в туннеле, должен иметь привод для вентилятора принудительного обдува, который обеспечивает охлаждение двигателя на режиме висения и при горизонтальном полете, когда скорость относительно невелика.

В этом же туннеле устанавливается маслорадиатор. Регулировка температуры двигателя и масла может осуществляться путем изменения величины входного или выходного отверстий туннеля при помощи подвижных заслонок, управляемых из кабины летчика вручную или автоматически.

Авиационный поршневой двигатель обычно имеет номинальное число оборотов порядка 2000 в минуту. Понятно, что полное число оборотов двигателя на винт передавать нельзя, так как при этом концевые скорости лопастей будут настолько велики, что вызовут возникновение скоростного срыва потока. Из этих соображений число М на концах лопастей должно быть не более 0,7-0,8. Кроме того, при больших центробежных силах несущий винт был бы тяжелой конструкции.

Подсчитаем, какова величина максимально допустимых оборотов несущего винта диаметром в 12 м, при которых число М концов лопастей не превышает 0,7 для высоты полета в 5000 м при скорости полета в 180 км/час,

Итак, двигатель для вертолета обязательно должен иметь редуктор с высокой степенью редукции.

На самолете двигатель всегда жестко соединен с винтом. Прочный, малого диаметра цельнометаллический винт легко выдерживает рывки, сопровождающие запуск поршневого двигателя, когда он резко набирает несколько сот оборотов. Винт вертолета, имеющий большой диаметр, далеко разнесенные от оси вращения массы п, следовательно, большой момент инерции, не рассчитан на резкие переменные нагрузки в плоскости вращения; при запуске может произойти повреждение лопастей от пусковых рывков.

Поэтому необходимо, чтобы в момент запуска несущий винт вертолета был отсоединен от двигателя, т. е. двигатель должен запускаться вхолостую, без нагрузки. Обычно это осуществляется введением в конструкцию двигателя фрикционной и кулачковой муфт.

Перед запуском двигателя муфты должны быть выключены, при этом вращение вала двигателя на несущий винт не передается.

Однако без нагрузки двигатель может развить очень большие обороты (дать раскрутку), которые вызовут его разрушение. Поэтому при запуске до включения муфт нельзя полностью открывать дроссельную заслонку карбюратора двигателя и превышать установленное число оборотов.

Когда двигатель уже запущен, необходимо соединить его с несущим винтом посредством фрикционной муфты.

В качестве фрикционной муфты может служить гидравлическая муфта, состоящая из нескольких металлических дисков, покрытых материалом, обладающим высоким коэффициентом трения. Часть дисков соединена с валом редуктора двигателя, а промежуточные диски соединены с приводом главного вала к несущему винту. До тех пор, пока диски не сжаты, они свободно проворачиваются относительно друг друга. Сжатие дисков осуществляется поршнем. Подача масла с высоким давлением под поршень заставляет поршень передвигаться и постепенно сжимать диски. При этом крутящий момент от двигателя передается на винт постепенно, плавно раскручивая винт.

Счетчики оборотов, установленные в кабине, показывают числа оборотов двигателя и винта. Когда обороты двигателя и винта равны, это означает, что диски гидравлической муфты плотно прижаты друг к другу и можно считать, что муфта соединена по типу жесткого сцепления. В этот момент может быть плавно (без рывков) включена кулачковая муфта.

Наконец, для обеспечения возможности самовращения, несущего винта надо, чтобы винт автоматически отключался от двигателя. До тех пор, пока двигатель работает и вращает винт, кулачковая муфта находится в зацеплении. При отказе же двигателя его обороты быстро уменьшаются, но несущий винт некоторое время по инерции продолжает вращение с тем же числом оборотов; в этот момент кулачковая муфта выходит из зацепления.

Несущий винт, отсоединенный от двигателя, может продолжать затем вращение на режиме самовращения.

Полет на режиме самовращения с учебными целями производится при выключенном двигателе или при работающем двигателе, в последнем случае обороты его уменьшаются настолько, чтобы винт (с учетом редукции) делал большее число оборотов, чем коленчатый вал двигателя.

После посадки вертолета обороты двигателя сначала уменьшаются, выключается муфта сцепления, а затем останавливается двигатель. При стоянке вертолета винт всегда должен быть заторможен, иначе он может начать вращаться от порывов ветра.

Мощность двигателя вертолета расходуется на преодоление сопротивления вращения несущего винта, на вращение рулевого винта (6-8%), на вращение вентилятора (4-6%) и на преодоление потерь в трансмиссии (5-7%).

Таким образом, несущий винт использует не всю мощность двигателя, а только часть ее. Использование винтом мощности двигателя учитывается коэффициентом, который показывает, какую часть мощности двигателя использует несущий винт. Чем выше этот коэффициент, тем более совершенна конструкция вертолета. Обычно = 0,8, т. е. винт использует 80 % мощности двигателя:

Мощность поршневого двигателя зависит от весового заряда воздуха, всасываемого в цилиндры, или от плотности окружающего воздуха. В связи с тем, что с поднятием на высоту плотность окружающего воздуха уменьшается, постоянно падает также мощность двигателя. Такой двигатель носит название невысотного. С поднятием на высоту 5000-6000 м мощность такого двигателя уменьшается примерно вдвое.

Для того чтобы до определенной высоты мощность двигателя не только падала, а даже увеличивалась, на магистрали всасывания воздуха в двигатель ставят нагнетатель, повышающий плотность всасываемого воздуха. За счет нагнетателя мощность двигателя до определенной высоты, называемой расчетной, возрастает, а затем падает так же, как у невысотного.

Нагнетатель приводится во вращение от коленчатого зала двигателя. Если в передаче от коленчатого вала к нагнетателю имеются две скорости, причем при включении второй скорости увеличиваются обороты нагнетателя, то с поднятием на высоту можно дважды обеспечивать повышение мощности. Такой двигатель имеет уже две расчетные высоты.

На вертолетах, как правило, устанавливаются двигатели с нагнетателями.

Для того чтобы самолет или планер летал, нужна подъемная сила, а эта сила создается крылом. Поэтому главным в самолете является крыло, ибо в конечном счете Весь самолет может быть сведен в летающее крыло, без фюзеляжа, без оперения.

У вертолета роль крыла играет несущий винт. Даже если в летательном аппарате ничего больше нет, кроме несущего винта, мы можем принципиально назвать его «вертолетом».

Наверное, многие в детстве делали себе такой «вертолет», состоящий только ив одного винта, вырезанного из куска жести. Стартовым устройством для него служила обыкновенная катушка от ниток, вращающаяся на стержне.

Однако роль несущего винта вертолета гораздо более многогранна, чем роль крыла самолета.

Созданием подъемной силы еще не ограничивается назначение несущего винта.

Когда вы посмотрите на вертолет в горизонтальном полете, вы неизбежно обратите внимание на то, что фюзеляж носом наклонен к горизонту. При этом наклоненным вперед оказывается и несущий винт.

Полная аэродинамическая сила R, развиваемая несущим винтом и направленная перпендикулярно к плоскости вращения концов лопастей, в этом случае может быть разложена на две составляющие: направленную вертикально подъемную силу, которая поддерживает вертолет на заданной высоте, и силу, направленную по касательной к траектории полета, Р, которая на вертолете является силой тяги. За счет этой силы вертолет летит вперед. Таким образом, несущий винт в поступательном полете одновременно является и тянущим винтом.

Однако и этим не ограничивается роль несущего винта. У вертолета в отличие от самолета нет рулевых поверхностей, таких, как элероны, триммеры, рули направления и высоты. Да они и не имели бы смысла, так как во время полета не обдувались бы потоком воздуха и в силу этого не могли бы служить целям управления.

Ведь мы знаем, что для изменения положения тела, к нему нужно приложить внешнюю силу. В полете вертолет окружен воздухом, поэтому внешняя сила может быть только результатом взаимодействия каких-либо частей вертолета с воздушной средой. Для того чтобы возникла сила сопротивления воздуха, тело должно перемещаться с большей скоростью. Когда вертолет висит в воздухе, то этому условию не отвечает ни одна его часть, кроме винта. Поэтому роль органа управления вертолетом также возложена на несущий винт. Действуя ручкой управления, летчик с помощью особых устройств, о которых будет рассказано в следующих главах, добивается такого положения, которое равносильно изменению плоскости вращения несущего винта. При этом изменяет свое направление и полная аэродинамическая сила воздушного винта и обе ее составляющие. И если подъемная сила всегда направлена вертикально вверх, то вторая составляющая - по касательной к траектории полета.

В зависимости от угла наклона полной аэродинамической силы меняется не только направление, но и величины ее составляющих. Следовательно, управляя несущим винтом, летчик может изменять не только направление полета, но и скорость полета.

Для подъема или спуска вертолета летчик также воздействует на лопасти несущего винта, уменьшая или увеличивая одновременно и на одинаковую величину угол установки всех лопастей.

Если на вертолете отказывает двигатель, то, уменьшая углы атаки лопастей, летчик ставит несущий винт в положение самовращения (авторотации). Поддерживаемый подъемной силой, создаваемой винтом на этом режиме работы, вертолет совершает безопасный планирующий спуск.

Из сказанного выше ясно, что для понимания устройства и полета вертолета надо разобраться прежде всего в работе несущего винта; для того чтобы вертолет успешно мог летать, конструктор должен обеспечить надежность прежде всего несущего винта.

Летчики, инженеры, техники и механики, летающие на вертолетах и обслуживающие их, прежде всего должны следить за безукоризненным состоянием несущего винта.

Итак, несущий винт - вот что главное в вертолете

Режимов работы несущего винта вертолета чрезвычайно много. Каждому режиму полета вертолета соответствует свой режим работы несущего винта. Основными для вертолета являются: пропеллерный режим, режим косой обдувки, режим самовращения (авгоротация) и режим вихревого -сольца.

Пропеллерный режим возникает при вертикальном подъеме или висении вертолета.

Режим косой обдувки возникает при поступательном полете вертолета.

Режим самовращения возникает при отключении двигателя вертолета от несущего винта в полете, при этом винт вращается под действием потока воздуха.

Режим вихревого кольца возникает при снижении вертолета. При таком режиме поток воздуха, проходя сквозь ометаемую винтом поверхность сверху вниз, вновь подходит к винту сверху.

Однако в некоторых частных случаях, например, в пропеллерном режиме, его работа схожа с работой самолетного винта. Когда самолет находится на земле или летит горизонтально, его винт обдувается со стороны плоскости вращения (по оси). Когда вертолет находится на земле, висит в воздухе или поднимается вертикально вверх, его несущий винт также обдувается со стороны плоскости вращения (по оси). Различие при этом состоит только В ТОМ, что у самолета струи воздуха проходят через плоскость вращения винта в горизонтальном направлении, спереди назад, тогда как у вертолета - в вертикальном направлении, сверху вниз. При этом несущий винт захватывает воздух из зоны А сверху и отбрасывает его, закручивая, вниз, в зону. На место частиц воздуха, забранных из зоны А, поступают частицы воздуха из окружающей среды и частично из зоны Б, но уже вне плоскости вращения винта.

До того, как несущий винт был приведен во вращение, воздух над винтом н под ним находился в состоянии покоя С началом вращения винта приборы, внесенные с область действия винта, но находящуюся вдали от него, покажут наблюдателю, что в сечении 0-0 воздух по-прежнему находится в состоянии относительного покоя. Его давление равно атмосферному, а скорость. Расстояние от сечения 0-0, где еще не наблюдается влияния винта, до плоскости вращения винта есть величина переменная, которая зависит от вязкости среды и точности применяемых нами приборов. Чем точнее прибор, тем он дальше от винта зарегистрирует наличие скорости воздуха, частички которого будут устремлены к винту.

Если бы воздух был лишен сил вязкости, то действие винта сказалось бы бесконечно далеко.

Фактически ввиду того, что воздух представляет собой вязкую среду, влияние винта перестает ощущаться уже на расстоянии десятков метров.

Перенося наши приборы из сечения 0-0 все ближе к сечению, мы заметим постепенный прирост скорости воздуха, подсасываемого винтом. Та скорость, которую воздух имеет, подходя к сечению, называется индуктивной скоростью подсасывания. На основании закона сохранения энергии кинетическая энергия (энергия скорости движения) не может увеличиться без того, чтобы не уменьшался другой какой-либо вид энергии. И действительно, наряду с ростом скорости воздуха до ш, мы замечаем, что давление воздуха р0 при этом падает. Это значит, что увеличение скорости воздуха произошло за счет уменьшения давления. За винтом сечение потока сжимается и происходит еще большее увеличение скорости воздуха. Казалось бы, должно было последовать дальнейшее падение давления. Однако сразу за винтом давление растет до р-2. Не противоречит ли это закону сохранения энергии? Да, противоречит, если мы не примем во внимание того обстоятельства, что воздух извне (от винта) получил добавочную энергию (механическую). Механическая энергия винта, преобразуюсь в кинетическую и потенциальную энергию потока, увеличивает и скорость и давление воздуха одновременно.

В сечении сразу за винтом прибор нам показывает, что воздух по сравнению с сечением имеет скорость и», называемую скоростью отбрасывания. Причем скорость отбрасывания оказывается вдвое больше скорости подсасывания.

Далеко за винтом, в сечении (теоретически на бесконечном удалении), скорость и давление воздуха восстанавливаются до первоначальных значений. Энергия потока при этом из-за наличия сил вязкости рассеивается в пространстве.

Таково действие винта на воздух, которое является следствием приложения к винту энергии вращения. Этому действию соответствует ответное действие воздуха на винт, которое проявляется в виде силы тяги, являющейся проекцией полной аэродинамической силы R на ось, проходящую через втулку винта перпендикулярно плоскости его вращения. Если динамометр, соединенный с винтом, при остановленном винте показывал нулевое значение тяги, то по мере роста оборотов тяга будет все больше и больше возрастать. На режиме висения и вертикального подъема на всех других режимах полета

Величину тяги, создаваемой винтом, можно не только замерить, но и подсчитать.

Вертолеты летают, потому что у них крутятся длинные лопасти несущего винта, чьи поперечные сечения по форме похожи на сечение самолетных крыльев. Подъемная сила вертолетных лопастей может меняться, если изменять угол наклона всех лопастей одновременно.

А различные повороты машины выполняются при помощи изменения наклона отдельно каждой лопасти при ее вращении. Если надо лететь вперед или назад, поворачивать налево или направо, вращающийся несущий винт поворачивают в направлении желаемого маневра.

В хвостовой части вертолета установлен еще один, небольшой вспомогательный несущий винт. Он нужен для того, чтобы, вращаясь, уравновешивать такое действие главного винта, которое могло бы привести к закручиванию всего вертолета вокруг его вертикальной оси. Другими словами, вспомогательный винт позволяет машине стабильно держаться в воздухе. Кроме всего прочего, вертолеты могут неподвижно зависать в воздухе. Для<» этого требуется, чтобы вес машины оказался равен подъемной силе, создаваемой несущим винтом.

Главный несущий винт

В поперечном сечении лопасть главного несущего винта похожа на крыло самолета. Воздушный поток, обтекая верхнюю и нижнюю поверхность лопасти, создает над ней пониженное давление и рождает подъемную силу.

Вспомогательный несущий винт

Сила, возникающая при вращении главного винта, стала бы раскручивать весь вертолет, если бы не было стабилизирующего эффекта от работы вспомогательного винта, расположенного на хвосте.

Втулка главного несущего винта

Чтобы вертолет был стабилен в полете, пилот устанавливает нужный угол лопастей главного винта. Для этого служит устройство, известное как кольцо автомата перекоса. Оно укреплено на валу несущего винта. Вертолет может лететь, кружить или неподвижно парить в воздухе в соответствии с тем, как пилот установит это кольцо. Ниже на рисунке показаны перемещения кольца вверх и вниз, которые приводят к изменению наклона лопасти винта. Кроме того, кольцо автомата перекоса можно наклонять, чтобы изменить угол наклона винтового диска.

Пилотирование вертолета

1. Чтобы лететь вперед, пилот толкает рычаг управления от себя. При этом винтовой диск наклоняется к носу.

2. Чтобы набирать высоту, пилот увеличивает общий тангаж всех лопастей, пока подъемная сила не превзойдет силу тяжести.

3. Чтобы висеть неподвижно, пилот удерживает такой угол наклона винта, чтобы подъемная сила и сила тяжести были равны.

4. Чтобы дать задний ход, пилот наклоняет винтовой диск по направлению к хвосту.

5. Чтобы повернуть, пилот поворачивает винтовой диск влево или вправо.

6. Чтобы изменить курс, пилот устанавливает нижний угол наклона лопастей вспомогательного винта.

Устройство одновинтового вертолета показано на
(рис.159)
1-лопасть несущего винта, 2-втулка и автомат-перекос, 3-главный редуктор, 4-соединительный вал, 5-промежуточный редуктор, 6-вал ведущий к хвостовому винту, 7-хвостовой винт, 8-редуктор хвостового винта, 9-опора, 10-хвостовая балка, 11-бак для бензина, 12-вентилятор, 13-основное шасси, 14-выхлопной колектор с глушителем, 15-бак для масла, 16-двигатель, 17-передняя стойка шасси, 18-приборная доска, 19-сиденья лётчиков

В качестве силовых установок вертолетов применяют поршневые двигатели воздушного охлаждения или турбовинтовые реактивные двигатели. Основными органами управления вертолетом в кабине летчика

(рис. 160)
1-доска приборов, 2-ручка управления, 3-педали, 4-рычаг "шаг-газ" , 5-ручка тормоза несущего винта, 6-ручка управления муфтой сцепления, 7-пульт управления, 8-сиденья пилотов, 9-сиденья пассажиров

являются ручка управления, педали ножного управления, рычаг управления общим шагом и корректор газа (рычаг «Шаг-газ»). Ручка управления расположена перед сиденьем летчика и связана с автоматом-перекосом. Отклонением ручки от нейтрального положения вперед достигается наклон вертолета на пикирование и движение его вперед; отклонением назад - наклон вертолета на кабрирование и движение его назад; вправо - наклон вертолета вправо и движение его вправо; влево - наклон вертолета влево и движение его влево.

Педали ножного управления расположены впереди сиденья летчика. Нажимая педали, летчик изменяет шаг рулевого винта, осуществляя тем самым путевое управление вертолетом. Рычаг управления общим шагом расположен обычно слева от сиденья летчика. С его помощью летчик управляет одновременно изменением шага (установочного угла) всех лопастей несущего винта. Движение рычага вверх соответствует увеличению шага и подъему вертолета. Изменение положения рычага общего шага одновременно вызывает и изменение частоты вращения двигателя.Лопасти несущих винтов вертолетов имеют шарнирную подвеску к втулке винта, которая позволяет им совершать повороты трех видов: вокруг продольной оси, изменяя свой установочный угол ф, называемый также шагом лопасти

(рис. 161, а)

Вокруг горизонтального шарнира, совершая маховые движения (рис. 161, б), причем взмах вверх и вниз конструктивно ограничен упорами (нижний упор ограничивает свисание лопасти при стоянке вертолета); вокруг вертикального шарнира (рис. 161, в). В настоящее время управление несущим винтом большинства вертолетов осуществляется с помощью автомата-перекоса, изобретенного Б. Н. Юрьевым. На

(рис. 162)
1,12-поводки тяг поперечного и продольного управления, 2,13-оси, 3-вращающееся кольцо, 4-шарики, 5.6-невращающееся кольца, 7,8-рычаги шлиц-шарнира, 9-ползун, 10,11-поводок и тяга осевого шарнира лопастей, 14-вал ротора, 15-рычаг общего шага


Схематически показано устройство автомата-перекоса. На вращающемся валу 14 несущего винта (ротора) имеется ползун 9,-который не вращается, но может двигаться вверх и вниз. На ползуне с помощью универсального шарнира с осями 2 и 13 подвешено кольцо 5. Через шарики 4 невращающееся кольцо 5 связано с вращающимся кольцом 3, т. е. кольцо 5, шарики 4 и кольцо 3 образуют шарикоподшипник. Кольцо 3 с помощью шлиц-шарнира (рычаги 7 и 8) соединено с валом несущего винта и вращается с такой же, как и вал частотой. Через тяги 11 вращающееся кольцо соединено с поводками 10 осевых шарниров лопастей. При движении ползуна 9 вверх угол установки лопастей, будет увеличиваться, а при движении ползуна вниз - уменьшаться. Чтобы понять, как влияет изменение шага лопастей на полет вертолета, рассмотрим вертикальный полет. Вертикальный полет достигается изменением общего шага лопастей. При этом угол атаки всех лопастей одновременно возрастает или уменьшается на одинаковую величину, что соответствует увеличению или уменьшению подъемной силы, а следовательно, подъему или снижению вертолета. Из рисунка видно, что если рычаг общего шага 15 поднять вверх, то поднимутся вверх и оба кольца - невращающиеся и вращающееся; шаг лопастей увеличится, в результате чего вертолет будет подниматься. Если же рычаг опустить вниз, то вертолет будет снижаться.



 


Читайте:



Презентация на тему ""Уроки французского" В

Презентация на тему

В. Г. Распутин «Уроки французского». Урок литературыв 6 классе Распутин Валентин Григорьевич ( р. 1937), прозаик. Родился 15 марта в селе...

Названия, описания и особенности зимующих птиц

Названия, описания и особенности зимующих птиц

Парфенчук Алефтина ИвановнаДолжность: педагог дополнительного образования.Учебное заведение: МАОУДО города Нижневартовска Центр детского...

Разговорный стиль речи Порядок слов в предложении свободный

Разговорный стиль речи Порядок слов в предложении свободный

Слайд 2 Научиться говорить – значит научиться строить высказывания Слайд 3 В разговорном стиле важнейшую роль играет звуковая сторона речи,...

Сочинение рассуждение на тему деньги Какое значение имеют деньги в жизни человека

Сочинение рассуждение на тему деньги Какое значение имеют деньги в жизни человека

Многие задумываться о роли денег в жизни современного человека и над вопросом можно ли быть счастливым с не большим доходом?Современный человек не...

feed-image RSS